Prefrontal, Parietal, and Temporal Cortex Networks Underlie Decision-Making in the Presence of Uncertainty

Martin P. Paulus,*†‡ Nikki Hozack,* Blanca Zauscher,* Jennifer E. McDowell,† Lawrence Frank,†§ Gregory G. Brown,†‡ and David L. Braff†

*Laboratory of Biological Dynamics and Theoretical Medicine, †Department of Psychiatry, §Department of Radiology, University of California San Diego, San Diego, California 92093-0603; and ‡San Diego Veterans Administration Medical Center, San Diego, California

Received May 26, 2000; published online November 3, 2000

INTRODUCTION

The prefrontal cortex is an essential brain substrate for a variety of neuropsychological processes including executive functioning, planning, reasoning, working memory, and context maintenance. Neuroimaging studies in humans have shown that tests of executive functioning are associated with activation of dorsolateral, ventromedial-orbitofrontal prefrontal, and cingulate cortex (Mellers et al., 1995; D’Esposito et al., 1995; Robbins, 1996; Cohen et al., 1997; Owen et al., 1998; Smith, Jonides, 1999; Mellers et al., 1995). One key function of the prefrontal cortex is decision-making, i.e., selecting a response in the presence of a number of response alternatives. Decision-making involves a set of cognitive and noncognitive processes, such as attention, working-memory (Bechara et al., 1998), contingency approximation (Elliott and Dolan, 1998; Tversky et al., 1988), hypothesis testing (Elliott and Dolan, 1998), and rule generation (Seale and Rapoport, 1997). In some decision-making situations involving judgments, the ventromedial prefrontal cortex appears to be a critical neural substrate that provides unconscious biasing steps to guide the subject to find an advantageous response (Bechara et al., 1997). In other decision-making situations, i.e., when there is no a priori correct response and subject is using different rules to guide responses in the presence of uncertainty, the critical neural systems involved are not well understood.

Several decision-making tasks have been developed recently to examine the neural substrates underlying strategic decision-making. Specifically, a two-choice prediction task has been used by several investigators (Frith and Done, 1983; Elliott et al., 1999; Lyon et al., 1986) to examine decision-making in the presence of uncertainty. Central to this task is that the subject does not know which response is “correct” and does not know that each response is reinforced randomly. However, despite the random reinforcement, subjects do not select their sequences of responses randomly (Paulus, 1997; Paulus et al., 1994). Instead, nonrandom sequences of responses support the basic hypothesis that subjects use rules that govern the decision-making process even in the presence of randomness. Remarkably, similar behavior has been observed in rodents on an animal analog of this task (Evenden, 1988).

A common decision-making strategy is called win-stay/lose-shift (Evenden and Robbins, 1983). When using this strategy, subjects select their current response based on the outcome of the previous situation. For example, if the previous response was reinforced, i.e., the subject was informed that the selected response was a “correct,” the subject chooses the same response
again (win–stay). If the previous response was not reinforced, the subject switches to a different response (lose–shift). This investigation addressed the central question whether circumscribed neural substrates are activated when the subject is influenced by a specific strategy. Specifically, nonlinear assessment tools are used to quantify the degree to which sequences of responses during the two-choice prediction task are consistent with different possible strategies.

Previous neuroimaging studies support the notion that the neural substrate underlying the behavior observed in these tasks involves the both ventromedial and dorsolateral prefrontal cortex (Elliott and Dolan, 1998; Elliott et al., 1999; Rogers et al., 1999).

Therefore, the following hypotheses were examined. If the subject uses self-generated strategies while performing the two-choice prediction task and self-generated actions are associated with the activation of prefrontal cortex, then one would expect to see prefrontal activation confirming these previous reports. Moreover, if win–stay/lose–shift is the prominent strategy influencing the sequences of responses on this task and the prefrontal cortex is part of a neural network that underlies the behavior of this task, one would expect to see significant activation of the prefrontal cortex or associated areas with the fluctuating frequency of the win–stay/lose–shift rule during this task.

METHODS

Subjects. This study was approved by the UCSD Human Subjects Committee. Twelve normal control, right-handed subjects (2 females and 10 males) age 40.0 years ± 1.95 (range 28–50) with an average education level of 15.0 ± 0.43 years (range 12–18) participated in this study. Subjects were screened for psychopathology using a structured clinical interview for DSM IV diagnosis and a MMPI-2 personality questionnaire. These subjects were given the two-choice response task and the two-choice prediction task prior to the experiment in the fMRI environment.

Task. The two-choice prediction task has been described in detail elsewhere (Paulus, 1997). A simple situation is presented graphically on a computer screen (see Fig. 1). The task for the subject is to predict the occurrence of a stimulus. The reinforcement schedule is determined beforehand such that 50% of the responses will be reinforced, i.e., each subject will "correctly" predict half of the presentations of the car. The two-choice response task requires the subject to press the Left or Right button depending on which side the car is shown. For both tasks, the computer randomly generates the location of the car. Both tasks are self-paced, i.e., the next trial is initiated after a brief (300 ms) time-out period.

FIG. 1. Two-choice response task and two-choice guessing task. The subject sits in front of a computer. A house is shown in the center of the screen with a person to the left and right. Two-choice prediction task. The task is to decide whether a car will be presented on the left or the right side and to push a left or right button accordingly. After pressing a button, a bridge is shown on the left or right, respectively, and the car is presented for 300 ms on the left or right side by chance. Two-choice response task: the subject is instructed to press the Left or Right button depending on which side the car is shown. For both tasks, the computer randomly generates the location of the car. Both tasks are self-paced, i.e., the next trial is initiated after a brief (300 ms) time-out period.

Subjects. This study was approved by the UCSD Human Subjects Committee. Twelve normal control, right-handed subjects (2 females and 10 males) age 40.0 years ± 1.95 (range 28–50) with an average education level of 15.0 ± 0.43 years (range 12–18) participated in this study. Subjects were screened for psychopathology using a structured clinical interview for DSM IV diagnosis and a MMPI-2 personality questionnaire. These subjects were given the two-choice response task and the two-choice prediction task prior to the experiment in the fMRI environment.
lowing variables were recorded: (1) the choice selected by the subject (left or right), (2) the computer selected response (left or right), and (3) the latency to select a response or decision time (time from the presentation of the current situation to the selection of the response). Based on these variables, the strategies of decision making in the presence of uncertainty were assessed by two sets of measures: (1) General response biases: the number of left or right responses or stay (a left response followed by left response), versus switch (left followed by right response), responses. (2) The degree to which the current response is determined by the previous response, the previous stimulus, or a combination of both is quantified by mutual information measures. Mutual information functions (Herzel and Grosse, 1997) are based on the logarithmic likelihood ratio between the observed frequency of an event and the expected frequency of an event. These functions quantify the degree to which the co-occurrence of two observations is above chance level in units of bits. For example, if the subject selects the left response more often when the car was shown previously on the left side, the mutual information will quantitate the bits of information contained in the response selection due to knowing the previous location of the car. The largest possible value of the mutual information is the number of bits necessary to predict the response. For example, if the subject chooses left 50% of the time, 1 bit is needed to determine any given response. If knowing the previous location of the car completely predicts the response then the mutual information between the location of the car and the response is 1 bit.

FMRI protocol and image analysis pathway. A standard fMRI protocol was used. Specifically, magnetic resonance images were obtained using a 1.5 Tesla whole body system (Siemens, Erlangen). Anatomical T1-weighted images of the whole brain (MPRAGE, TR/TE 11.4/4.4 ms, flip angle = 10°, FOV = 256 × 256 1 mm pixels, 1 mm slice thickness) were obtained sagitally to identify the anterior/posterior commissure, to coregister the functional image and to transform the images into Talairach space. Thirty-two slices of T2*-weighted images were obtained in the transverse plane using echo planar imaging (TR/TE 60/40 ms, flip angle = 90°, 64 × 64 pixel FOV = 220 × 220 mm, 3-mm slice thickness) every 3000 ms for 112 repetitions. The in-plane resolution of the functional images was 3.43 × 3.43 × 3 mm. The slice thickness was chosen to minimize signal dropout related to magnetic susceptibility variations in the orbitofrontal cortex.

The image analysis pathway and statistical analysis of the images encompassed the following steps. First, the anatomical and functional images were reconstructed using programs developed by the UCSD fMRI group. All subsequent image processing was done using the Analysis of Functional Neuroimages (AFNI) software package (Cox, 1996). Second, the echoplanar images were coregistered using a 3-D-coregistration algorithm to the echoplanar image that resulted in the smallest amount of image translation and rotation relative to all other images. Third, a regression analysis was carried out with a 0-1 boxcar reference function to predict the fluctuation in the linearly de-trended echoplanar image intensities as measured by a voxel-wise regression or fit-coefficient. Fourth, a Gaussian filter with FWHM 3.4 mm was applied to the regression-coefficient image to account for individual variations of the anatomical landmarks. Fifth, a voxelwise t-test with the null-hypothesis that the regression coefficient, predicting the signal intensity fluctuations between the two-choice prediction task and the two-choice response task equals to zero was conducted across all subjects to obtain a voxel-wise t-score image. Sixth, to control for false-positive regions of activation in the statistical images, the activation significance threshold was adjusted based on a Monte-Carlo simulation of filtered voxels' activation patterns, which takes into account spatial correlations (Gaussian FWHM 3.4), a priori significance thresholds (P < 0.05), slice characteristics (3.4 × 3.4 × 3 mm), and number of voxels in an average brain volume (44 × 51 × 36) (Forman et al., 1995). Based on these simulations, it was determined that a voxel-wise a priori probability of 0.05 would result in an a posteriori, cluster-wise activation probability of 0.05 if a minimum volume of 350 μl and a connectivity radius of 3.43 mm was considered. This statistical threshold was applied to all subsequent analyses and corresponds to an a posteriori voxel-wise probability of P < 8.83 × 10⁻⁶. All results are presented as volume-thresholded t scores of the regression coefficient between the off-task condition (two choice response task) and the on-task condition (two-choice prediction task).

Behavioral reference function. The image analysis pathway described above used a reference vector based on the experimental block design comparing the two-choice prediction task with the two-choice response task. In addition, a reference vector was developed based on the response characteristics of each individual subject during the two-choice prediction task. Specifically, the behavioral reference function was obtained from the sequences of left/right responses and the presentation of the car obtained during the two-choice prediction task blocks. First, each response was classified as consistent with a win–stay/lose–shift strategy (+1), i.e., the subject selected the same response if it was previously reinforced (win-stay) or shifted to the other response if it was not reinforced (lose-shift). Otherwise the response was classified as inconsistent with a win–stay/lose–shift strategy (−1), e.g., if the subject switched from one response to the other despite correctly predicting the previous re-
response (win-shift). Second, a cumulative behavioral record was obtained from the sequences of win-stay/lose-shift strategy consistent or inconsistent responses (see Fig. 4A, gray line with black points). Third, in order to assess the fluctuation of win-stay/lose-shift consistent responses around the general tendency of the individual subject to select responses consistent with this strategy, a linear regression analysis was performed. Specifically, the cumulative behavioral record was fitted to a linear function. The residual or detrended behavioral record, i.e., the difference between the linear function and the cumulative behavioral record, quantifies when the subject was more or less likely to select responses consistent with a win-stay/lose-shift strategy during the two-choice prediction task blocks (see Fig. 4A, thin black line). Fourth, the detrended behavioral record of win-stay/lose-shift fluctuations was convolved with a Gaussian kernel (SD 2.8 s (Frackoviak et al., 1997)) to account for the hemodynamic response inherent in the fMRI signal (see Fig. 4A, thick black line). Fifth, a regression analysis analogous to the analysis with the boxcar reference function described above was performed with the detrended behavioral record as a predictor for the echoplanar image intensity fluctuations during the two-choice prediction task. Sixth, the statistical analysis of the regression coefficients was conducted analogously to that described for the boxcar reference function. To summarize, a positive volume-threshold t score derived from the behavioral reference function signifies that the increased frequency of responses consistent with a win-stay/lose-shift strategy predicted increased echoplanar image intensity. In comparison, a negative t score signifies that an increase in frequency of responses inconsistent with a win-stay/lose-shift strategy predicted an increased echoplanar image intensity.

Statistical analysis. A mixed model ANOVA was used to analyze the behavioral measures. Specifically, two within-subjects factors (block: two-choice prediction task or two-choice response task; repetition: 5 blocks) were used to determine whether the behavior differed across the two task conditions. In order to adjust the degrees of freedom for the correlations in within-subjects designs (violations of sphericity), Greenhouse–Geisser (GG) corrections were applied.

RESULTS AND DISCUSSION

Behavioral measures. For each 30-s block, subjects selected on average 33.1 (±2.3) responses during the two-choice prediction task and 34.3 (±1.2) responses during the two-choice response task. The response frequency per block did not differ across task conditions (F_{GG}(1,11.0) = 0.48, NS) or repetitions (F_{GG}(2.1,23.8) = 2.92, NS), indicating that both tasks pose similar sensorimotor demands on the subject's response selection. The subjects selected the right response 47.7% (±1.6) of the time during the two-choice prediction task and 50.3% (±0.8) of the time during the two-choice response task. There was no significant difference in the number of right choices during the two-choice prediction task relative to the two-choice response task (F_{GG}(1,11.0) = 3.55, NS). However, there was an effect of repetition (F_{GG}(3,0,33.5) = 4.12, P < 0.05) and a repetition by task-type interaction (F_{GG}(3,3.361) = 2.93, P < 0.05), indicating the number of right versus left response fluctuated more during the two-choice response task when compared to the two-choice prediction task. The subject switched responses (from left to right or right to left) 46.9% (±2.0) during the two-choice prediction task and 49.6% (±0.4) during the two-choice response task. Response switching did not differ significantly across task conditions (F_{GG}(1,11.0) = 1.95, NS) but did differ across repetitions (F_{GG}(2.9,31.7) = 9.89, P < 0.01), indicating that while on the average subjects switched with similar frequency during the two-choice prediction task and the two-choice response task, different blocks during testing resulted in different rates of switching.

During the two-choice prediction task 4% of the information contained in the current response (or 0.042 ± 0.008 bits per choice) was related to the selection of the previous response as determined by the mutual information measure whereas only 2% (or 0.02 ± 0.004 bits per choice) of the current response was predictable by the previous response during the two-choice response task. The degree to which the previous response predicted the current response differed significantly across task-type (F_{GG}(1,11.0) = 9.36, P < 0.05) but did not vary significantly across repetition (F_{GG}(1.57,17.3) = 3.55, NS). Therefore, the previous response determined the current response during the two-choice prediction task but not during the two-choice response task. Ten percent (or 0.108 ± 0.027 bits per choice) of the uncertainty underlying the current response selection could be accounted for by a win-stay/lose-shift strategy during the two-choice prediction task. In comparison only 2% (or 0.020 ± 0.004 bits per choice) of the uncertainty in the current response selection could be accounted for by a win-stay/lose-shift strategy during the two-choice response task. There was a significant effect of task-type (F_{GG}(2.9,31.7) = 9.36, P < 0.01) but not repetition (F_{GG}(2.2,24.6) = 0.47, NS), indicating that response selection was significantly influenced by a win-stay/lose-shift strategy during the two-choice prediction task but not during the two-choice response task.

fMRI measures. As shown in Fig. 3, the activation differences between the two-choice prediction task and the two-choice response task support the hypothesis that prefrontal structures are involved in decision-making and are in support of previous findings. Specifically, as shown in Table 1, in comparison to the
two-choice response task, subjects showed significant bilateral activation during the two-choice prediction task in Brodmann Area 10 (superior/middle frontal gyrus) and Brodmann Area 7 (precuneus) (Fig. 3A). In addition the two-choice prediction task relative to the two-choice response task was associated with activation in the right insula, inferior parietal lobule, and MD thalamus nucleus. These results support the findings of a recent study using a similar experimental design, i.e., comparing a two-choice prediction task with a two choice reporting task (Elliott et al., 1999). In contrast, there was significantly more activation during the two-choice response task relative to the two-choice prediction task in the corpus callosum and the posterior cingulate gyrus.

In order to link the win–stay/lose–shift strategy specifically to the activation pattern of a neural substrate, a behavioral reference function was generated for each subject based on the choice sequences during the two-choice prediction task. As shown in Fig. 4B, the degree to which an individual utilizes this strategy fluctuates substantially during the trial blocks, which is consistent with the notion that subjects use varying strategies during this task. In contrast to the hypothesis, there was no significant activation of the prefrontal cortex with fluctuations of win–stay/lose-shift. In-
stead, as shown in Fig. 5 and Table 2, two areas posterior to the activation associated with the two-choice prediction task relative to the two-choice response task are involved in generating the win–stay/lose–shift strategy.

First, increased right superior temporal gyrus (BA 22) activation is associated with an increased response selection consistent with a win–stay/lose–shift strategy. Second, increased bilateral precuneus activation (BA 7) was associated with decreased response selection that consistent with a win–stay/lose–shift strategy. These results support the hypothesis that changes in frequency of win–stay/lose–shift is associated with temporal and parietal cortex and not with prefrontal areas.

Decision-making in the presence of uncertainty involves a network of structures including prefrontal (BA 10) and parietal cortex (BA 7, 40). The relative frequency with which a subject selects a response that is consistent or inconsistent with a win–stay/lose–shift strategy was associated with fluctuating activation in the temporal (BA 22) and parietal (BA 7) cortex but not in the prefrontal cortex. The response frequency and decision times were similar for both tasks, which supports the notion that similar efforts are exerted during both tasks. Finally, the main difference between the two tasks is the utilization of information about past responses and past outcomes when generating the current response. Therefore, the activation differences between the two tasks are primarily related to the dynamical aspects of decision-making, i.e., how the current response is part of a sequence of responses that are generated according to a plan of action.

The Talairach coordinates of activation clusters in this study match several areas reported in a previous investigation comparing a two-choice guessing task with a choice reporting task reported activation (Elliott et al., 1999). Specifically, the areas that activated during a two-choice prediction task relative to a choice reporting task were labeled BA 9/46 but the center of mass of the activated areas are in proximity to BA 10, which correspond to the area activated in this study. Moreover, in the previous study, the right precuneus was activated during the two-choice prediction task relative to the choice reporting task. Finally, in the previous study activation of MD thalamus was found in the two-choice prediction task relative to the choice reporting or two-choice response task. More recently, using PET technique and a two-choice gambling task, Rogers et al. (1999) reported that resolving conflicting

TABLE 1

Clusters Activated during the Two-Choice Prediction Task Compared to the Two-Choice Response Task

<table>
<thead>
<tr>
<th>Volume</th>
<th>Location</th>
<th>BA</th>
<th>L/R</th>
<th>Coordinates (x, y, z)</th>
<th>T statistics</th>
<th>Mean</th>
<th>SEM</th>
<th>T Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1134</td>
<td>Precuneus</td>
<td>7</td>
<td>R</td>
<td>(9, -73.3, 49.6)</td>
<td>3.8648</td>
<td>0.1666</td>
<td>3.194</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>Middle frontal gyrus</td>
<td>10</td>
<td>L</td>
<td>(-28.1, 55.5, 6.5)</td>
<td>3.4088</td>
<td>0.2612</td>
<td>5.6757</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>Precuneus</td>
<td>7</td>
<td>L</td>
<td>(-7.6, -77.4, 45.3)</td>
<td>3.8315</td>
<td>0.2331</td>
<td>5.393</td>
<td></td>
</tr>
<tr>
<td>567</td>
<td>Superior frontal gyrus</td>
<td>10</td>
<td>R</td>
<td>(28.2, -43.8, 18)</td>
<td>3.0018</td>
<td>0.1656</td>
<td>5.1332</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>Inferior parietal lobule</td>
<td>40</td>
<td>R</td>
<td>(40.5, -53.6, 43.5)</td>
<td>3.0768</td>
<td>0.2009</td>
<td>5.0252</td>
<td></td>
</tr>
<tr>
<td>756</td>
<td>Precuneus</td>
<td>7</td>
<td>L</td>
<td>(3.3, -57, 43.3)</td>
<td>2.8741</td>
<td>0.1291</td>
<td>4.5723</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>Insula</td>
<td></td>
<td></td>
<td>(33.1, 18.5, 8.1)</td>
<td>3.2603</td>
<td>0.1782</td>
<td>4.3976</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>MD thalamus</td>
<td></td>
<td></td>
<td>(8.1, -13.1, 10.8)</td>
<td>2.2221</td>
<td>0.1307</td>
<td>3.0022</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>Cropus callosum</td>
<td></td>
<td></td>
<td>(-17, -37.5, 6.7)</td>
<td>-2.5466</td>
<td>0.1215</td>
<td>-3.8735</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>Cingulate gyrus</td>
<td>31</td>
<td>L</td>
<td>(-10.1, -41.5, 34)</td>
<td>-2.768</td>
<td>0.1582</td>
<td>-3.7148</td>
<td></td>
</tr>
</tbody>
</table>

Note. Each voxel was thresholded at t > 2.06 (voxel-wise P < 0.05) and a minimum volume of 350 μl (>10 contiguous voxels) with a cluster connectivity radius of 3.43 mm. The T max indicates the largest t value within the cluster. A t score greater than zero signifies that the area is more activated during the two-choice prediction task relative to the two-choice response task, t less than zero corresponds to an area with increased activation during the two-choice response task relative to the two-choice prediction task.

TABLE 2

Cluster Activated with the Behaviorally Defined Wins–Stay/Lose–Shift Reference Function

<table>
<thead>
<tr>
<th>Volume</th>
<th>Location</th>
<th>BA</th>
<th>L/R</th>
<th>Coordinates (x, y, z)</th>
<th>Mean</th>
<th>SEM</th>
<th>T Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>351</td>
<td>Superior temporal gyrus</td>
<td>22</td>
<td>R</td>
<td>(46.9, -25.2, 15.1)</td>
<td>2.6455</td>
<td>0.1081</td>
<td>3.533</td>
</tr>
<tr>
<td>459</td>
<td>Precuneus</td>
<td>7</td>
<td>L</td>
<td>(-4.3, -59.9, 56.5)</td>
<td>-3.185</td>
<td>0.2196</td>
<td>-5.229</td>
</tr>
</tbody>
</table>

Note. Labels and statistics are analogous to those described in Table 1.
decisions was associated with activation in BA 10, BA 11, and BA 47. These results support the current finding that in the presence of equally conflicting response alternatives, i.e., choosing the left or right response with equally uncertain outcome, the prefrontal cortex provides important modulatory information that guides the selection of the responses. The modest overall degree to which win-stay/lose-shift predicted the current response (Fig. 2) and the significant fluctuations of the win-stay/lose-shift consistent responses throughout the task (Fig. 4) support the notion that subjects switch among different strategies, which is consistent with the maintenance of prefrontal activation throughout the two-choice prediction task. Therefore, subjects do not select one strategy exclusively and select response according to one rule only, instead, the sequences of choices result from the combination of different rules.

In contrast to the proposed hypothesis, fluctuation of the win-stay/lose-shift strategy during the two-choice prediction task was not associated with fluctuation of prefrontal activation. Instead, fMRI signal intensity fluctuations in the superior temporal gyrus and the precuneus correlated with response selection consistent or inconsistent with this strategy, respectively. According to posttest reports from subjects, this task involves two complementary cognitive processes. First, subjects generate a strategy that is based on the response and/or stimulus history to “predict” the current presentation of the stimulus. Second, subjects modify their strategy based on their prediction “success.” Accordingly, subjects may alternate between initiation of a new strategy and maintaining the current strategy and assessing its success. The behavioral reference functions constructed here are able to quantify the latter but not the former. Both STG and precuneus have been associated with subprocesses that are consistent with the maintenance of strategies in the presence of uncertainty. For example, the left superior temporal gyrus activation has been associated with higher semantic associations (Jessen et al., 1999), context-dependent processing (Opitz et al., 1999), and detecting the degree of predictability in a variably random sequence of stimulus presentations (Bischoff-Grethe et al., 2000). Therefore, the activation in this area may relate to assessing the success of the win-stay/lose-shift strategy during the two-choice prediction task.

The extensive activation of the precuneus is consistent with previous reports that have implicated this structure in temporal order retrieval (Cabeza et al., 1997), attentive tracking (Culham et al., 1998), category shifting (Nagahama et al., 1998), generation of response sequences (de Zubicaray et al., 1998), sequence learning (Sakai et al., 1998), hypothesis testing (Elliott and Dolan, 1998), episodic memory retrieval (Fletcher et al., 1995; Krause et al., 1999; Shallice et al., 1994), and temporal context recognition (Zorrilla et al., 1996). Therefore, the inverse correlation between the win-stay/lose-shift behavioral reference function and the activation in the precuneus may signify that this structure is critical in supplying alternative strategies, that take into account stored contingencies between the generated responses and their outcome.

This role of the precuneus is consistent with a model that has been put forth recently, which combines sensory-motor processing, attentional modulation of sensory and motor signals with reward contingent infor-
mation (Platt and Glimcher, 1999). The contingencies represent the subject's cognitive rule set. Accordingly, the decision-making process involves attentional and postattentional processes that enable the subject to form response strategies that are based on the previous responses and stimuli as well as their associated outcome. The current data support the hypothesis that there is a close connection between brain areas that have been associated with executive functioning (prefrontal cortex) and areas that show activation to varying contingencies with stimulus presentation (parietal cortex).

Decision-making is a complex process and may involve different neural networks based on the task demands. As opposed to other decision-making tasks, e.g., the Bechara and Rogers Gamble Task, there is no advantageous or disadvantageous strategy during the two-choice prediction task. The feedback, i.e., whether the prediction was correct or incorrect, does not assist the subject to find a "best" strategy. There is converging evidence from imaging studies (Rogers et al., 1999) and studies with ventromedial prefrontal cortex lesion subjects (Bechara et al., 1998) that the ventromedial prefrontal cortex is a critical neural substrate to help guide selecting advantageous strategies via noncognitive hunches. The current finding supports the hypothesis that areas more dorsal than the ventromedial prefrontal cortex are involved in initiating decision-strategies in a completely random environment. Thus, there may be a continuum of decision-making situations in the presence of uncertainty between searching for a "best" strategy in absence of an a-priori optimum rule and finding rules that result in advantageous decision-making. This hypothesis can be examined using

FIG. 5. Volume thresholded t map rendering of the behaviorally derived reference function in 11 controls shows deactivation in left precuneus (A) and activation in right temporal cortex (B). Anterior-posterior (x) cutpoints of the rendering are shown in Talairach coordinates.
the two-choice prediction task by assigning differential “success” rates to a priori defined sequences of responses. Alternatively, the decision-making process may parallel attentive processes during a visuospatial task. It has been proposed that attention draws upon the functional neuroanatomy of more basic sensory and motor processes for its instantiation (Nobre et al., 2000). It appears that transmodal centers of higher association areas are critical computational centers for large-scale neurocognitive networks and may provide the key substrate for attentional, motivational, and emotional modulations of sensorimotor data (Mesulam, 1998). Thus, it is not surprising that the key areas reported here also correspond to neural substrates that have been reported with spatial processing and neglect (Mesulam, 1999). Therefore decision-making may correspond to the computational activity of transmodal centers of visuospatial processing areas with volitional components. Future studies can examine this hypothesis by systematically varying the visuospatial, attentional, and volitional processing demands of the two-choice prediction task. In conclusion, decision-making may correspond to computational activity of transmodal centers of visuospatial processing areas with volitional components. Future studies can examine this hypothesis by systematically varying the visuospatial, attentional, and volitional processing demands of the two-choice prediction task.

ACKNOWLEDGMENTS

We acknowledge the invaluable help of Rick Buxton and Eric Wong in supporting the fmri experiments. This work was supported by grants from NIMH (MH R37-42228; D.L.B.), (MH5358; M.P.P.), and support from the Veterans Administration via a VISN 22 MI by grants from NIMH (MH R37-42228; D.L.B.), (MH5358; M.P.P.), and support from the Veterans Administration via a VISN 22 MI.

REFERENCES

